

A227605


Number of lattice paths from {8}^n to {0}^n using steps that decrement one component such that for each point (p_1,p_2,...,p_n) we have p_1<=p_2<=...<=p_n.


2



1, 128, 491825, 12509563082, 1026843977181745, 187978502469162658572, 61845760669881132413037769, 31862864761563509123808857974124, 23408169635197679203800470649923362577, 22939433009552344381207995985855864376139032
(list;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

0,2


LINKS

Vaclav Kotesovec, Table of n, a(n) for n = 0..30


MAPLE

b:= proc(l) option remember; `if`(l[1]=0, 1, add(add(b(subsop(
i=j, l)), j=`if`(i=1, 0, l[i1])..l[i]1), i=1..nops(l)))
end:
a:= n> `if`(n=0, 1, b([8$n])):
seq(a(n), n=0..10);


CROSSREFS

Row n=8 of A227578.
Sequence in context: A103348 A334669 A069446 * A016879 A227661 A016939
Adjacent sequences: A227602 A227603 A227604 * A227606 A227607 A227608


KEYWORD

nonn


AUTHOR

Alois P. Heinz, Jul 17 2013


STATUS

approved



